Fractional spanning tree packing, forest covering and eigenvalues

نویسندگان

  • Yanmei Hong
  • Xiaofeng Gu
  • Hong-Jian Lai
  • Qinghai Liu
چکیده

We investigate the relationship between the eigenvalues of a graph G and fractional spanning tree packing and coverings of G. Let ω(G) denote the number of components of a graph G. The strength η(G) and the fractional arboricity γ (G) are defined by η(G) = min |X | ω(G − X) − ω(G) , and γ (G) = max |E(H)| |V (H)| − 1 , where the optima are taken over all edge subsets X whenever the denominator is non-zero. The well known spanning tree packing theorem by Nash-Williams and Tutte indicates that a graph G has k edge-disjoint spanning tree if and only if η(G) ≥ k; and Nash-Williams proved that a graph G can be covered by at most k forests if and only if γ (G) ≤ k. Let λi(G) (μi(G), qi(G), respectively) denote the ith largest adjacency (Laplacian, signless Laplacian, respectively) eigenvalue of G. In this paper, we prove the following. (1) Let G be a graph with δ ≥ 2s/t . Then η(G) ≥ s/t if μn−1(G) > 2s−1 t(δ+1) , or if λ2(G) < δ − 2s−1 t(δ+1) , or if q2(G) < 2δ − 2s−1 t(δ+1) . (2) Suppose that G is a graph with nonincreasing degree sequence d1, d2, . . . , dn and n ≥ ⌊ 2s t ⌋ + 1. Let β = 2s t − 1 ⌊ 2s t ⌋+1 ⌊ 2s t ⌋+1 i=1 di. Then γ (G) ≤ s/t , if β ≥ 1, or if 0 < β < 1, n > ⌊2s/t⌋ + 1 + 2s−2 tβ and μn−1(G) > n(2s/t − 2/t − β(⌊2s/t⌋ + 1)) (⌊2s/t⌋ + 1)(n − ⌊2s/t⌋ − 1) . Our result proves a stronger version of a conjecture by Cioabă andWong on the relationship between eigenvalues and spanning tree packing, and sharpens former results in this area. © 2016 Elsevier B.V. All rights reserved. ∗ Corresponding author. E-mail address: [email protected] (X. Gu). http://dx.doi.org/10.1016/j.dam.2016.04.027 0166-218X/© 2016 Elsevier B.V. All rights reserved. 220 Y. Hong et al. / Discrete Applied Mathematics 213 (2016) 219–223

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing Interdiction and Partial Covering Problems

In the Packing Interdiction problem we are given a packing LP together with a separate interdiction cost for each LP variable and a global interdiction budget. Our goal is to harm the LP: which variables should we forbid the LP from using (subject to forbidding variables of total interdiction cost at most the budget) in order to minimize the value of the resulting LP? Interdiction problems on g...

متن کامل

Capacitated Trees , Capacitated Routing , and Associated

We study the polyhedral structure of two related core combinatorial problems: the subtree cardinalityconstrained minimal spanning tree problem and the identical customer vehicle routing problem. For each of these problems, and for a forest relaxation of the minimal spanning tree problem, we introduce a number of new valid inequalities and specify conditions for ensuring when these inequalities ...

متن کامل

On the tractability of some natural packing, covering and partitioning problems

In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G = (V, E) and two “object types” A and B chosen from the alternatives above, we consider the following questions. Packing problem: can we find an object of type A and one of type B in the edge set E ...

متن کامل

An Algorithm for Packing Connectors

Given an undirected graph G = (V; E) and a partition fS; Tg of V , an S{T connector is a set of edges F E such that every component of the subgraph (V; F) intersects both S and T. If either S or T is a singleton, then an S{T connector is a spanning tree of G. On the other hand, if G is bipartite with colour classes S and T, then an S{T connector is an edge cover of G (a set of edges covering al...

متن کامل

Approximation Algorithms for Mixed Fractional Packing and Covering Problems

We propose an approximation algorithm based on the Lagrangian or price directive decomposition method to compute an -approximate solution of the mixed fractional packing and covering problem: find x 2 B such that f(x) (1 + )a, g(x) (1 )b where f(x); g(x) are vectors with M nonnegative convex and concave functions, a and b are M dimensional nonnegative vectors and B is a convex set that can be q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 213  شماره 

صفحات  -

تاریخ انتشار 2016